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The CommonThread of Microbial Biofilms
Biofilms are arguably the most common state of microbial growth found in nature and in
patients infected with pathogenic organisms. A canonical feature of prokaryotic and eukaryotic
biofilms is their production of an extracellular matrix (Fig 1). The matrix provides a protective
environment for biofilm cells, offering a three-dimensional framework for both surface adhe-
sion and cell cohesion [1,2]. In addition, this extracellular material controls cell dispersion
from the biofilm and provides a nutrient source for the community [3]. The physical barrier
formed by the matrix is also clinically relevant, as it shields cells from environmental threats,
including immune cells and antimicrobial drugs used for treatment [4,5]. This defensive char-
acteristic has been demonstrated for biofilms formed by diverse fungal pathogens, including
Aspergillus, Candida, Cryptococcus, and Saccharomyces, with Aspergillus fumigatus and Can-
dida albicans being the best studied [2,5–8]. Biofilm-associated Candida infections are the
fourth cause for nosocomial infections (predominantly infecting medical devices), which may
lead to systemic infection associated with high mortality rates. Candida spp. are also the most
common cause of mucosal infection of the oral and vaginal sites, where biofilm infection has
been increasingly recognized. Despite the ubiquitous nature of the biofilm matrix, we are only
beginning to understand the synthesis and composition of this material for a handful of spe-
cies. This review will discuss select components of the extracellular matrix of fungal biofilms,
including their synthesis, structure, and function.

AComplex Assembly of Self, Host, and Neighbor
Two themes are common in the composition of microbial matrix. First, there is a contribution
from each of the four macromolecular classes: carbohydrate, protein, lipid, and nucleic acid
(Table 1). Second, there are complex interactions among the matrix components. The abun-
dance and specific chemistry of biofilm matrices among these components can be as diverse as
the microbes that produce them, in addition to the conditions under which biofilms are
formed. The greatest divergence in matrix composition appears at the protein level [9–11];
however, differences have also been observed in carbohydrate content and have been the focus
of most studies. For example, A. fumigatus, C. albicans, Cryptococcus neoformans, and Saccha-
romyces cerevisiae have each been shown to produce distinct, complex matrix polysaccharides
frequently composed of two or more monosaccharide components [11]. Interestingly, many of
the matrix components are similar, at least in part, to cell wall constituents. In fact, certain cell
wall production enzymes are important for the production of a matrix [12,13]. However, the
mature matrix structures most often vary from their cell wall counterparts in size, branching,
and sometimes in the combination of monosaccharide components. This suggests that matrix
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polysaccharides are either distinct from the cell wall or further modified after release from the
cell wall. In the case of C. albicans, assembly of the mannan-glucan complex (MGCx) was
found to occur in the extracellular space, demonstrating a critical role for the polysaccharide
modification enzymes identified in the matrix proteome. There has been minimal structural
study of matrix lipid composition and assembly; the observations demonstrated both similari-
ties and differences between matrix components and the cell plasma membrane [11,14].

Under in vivo conditions, the extracellular matrix complexity increases further. C. albicans
biofilms in three common infection site models each produced a matrix that contained a strik-
ing amount of host components—up to 98% of matrix proteins were of host origin [15]. The
most abundant host proteins varied based on the host niche: hemoglobin, albumin, and alpha
globulins in the venous catheter model; amylase and hemoglobin in the denture model; and
fibrinogen, keratin, and hemoglobin in the urinary catheter model. However, there was a con-
served group of proteins that included the matricellular proteins fibrinogen, fibronectin, hemo-
globin, and vitronectin, suggesting biofilm relevance across infection sites. DNA from the host

Fig 1. Scanningelectronmicrograph of aCandida albicansbiofilmgrown on a rat central venous catheter.
The image demonstrates fungal yeast and hyphal cell morphologies as well as abundant extracellular matrix
material.Scale bar represents 10 μm.

doi:10.1371/journal.ppat.1005828.g001
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is also a common matrix factor that has been linked to biofilm structural integrity and total
matrix production by Aspergillus biofilms [16].

Biofilm infections are often polymicrobial, with combinations of bacterial–bacterialand
bacterial–fungal species described [17,18]. The matrix composition of mixed-species biofilms
has not been closely examined. However, recent study of a C. albicans and Staphylococcus
aureus mixed biofilm found the Candida-derived extracellular matrix encased the bacterial
community [19]. It is plausible that entities from each species might help or hinder the produc-
tion of matrix by the other, for example, the complex 3D network of matrix-rich Candida bio-
film may conceivably provide a hypoxic microenvironment that nourishes the growth of
anaerobic bacteria [20]. Future experiments in this area will be tasked with identifying changes
in the mixed biofilm matrix compared to either biofilm species alone.

Key Components for a ProtectiveMatrix
One of the medically relevant traits of the biofilm extracellular matrix is its ability to protect
cells from extraordinarily high levels of anti-infectives. The initial link between Candida matrix
and resistance was discovered by the Douglas laboratory when they correlated matrix abun-
dance with biofilm tolerance to the antifungal drugs amphotericin B and fluconazole [21]. The
Candida matrix polysaccharide first linked to biofilm resistance to multiple drugs was β-1,3
glucan [13,22,23]; through a mechanism of drug sequestration, this matrix polysaccharide pre-
vents drugs from reaching their cellular targets. β-1,3 glucan has also been suggested to prevent
neutrophil activation, accounting for Candida biofilm resistance to killing by these innate
immune cells [24]. The exact nature of the matrix–antifungal drug interaction remains unde-
fined. However, preliminary nuclear magnetic resonance (NMR) interaction studies and the
differing physiochemical properties of the antifungal drugs impacted by this resistance mecha-
nism suggest a noncovalent drug–matrix interaction [11]. While most matrix biochemical
studies have been undertaken with C. albicans, phenotypic studies suggest that the matrix drug
sequestration phenomenon is common for other Candida species [25].

More recent work found surprisingly low levels of β-1,3 glucan but found larger quantities
of β-1,6 glucan and α-mannan, which interact to form an MGCx [11,26]. This polysaccharide
interaction was discovered to be key for protection of the biofilm from drug treatment.

Compared to bacterial biofilms, where extracellular DNA (eDNA) is an established mode of
horizontal gene transfer, C. albicans eDNA is largely noncoding [11]. Autolysis likely

Table 1. FungalMatrix Polysaccharide Content and Function.

Species Characterizedmatrix components* Drug resistance Immune
resistance

Relevant
sources

Aspergillus
fumigatus

Carbohydrates: GAG, galactomannan, α-1,3 glucan,
monosaccharides (43%); proteins:major antigens and hydrophobins

(40%); lipids (14%);melanin, polyols, eDNA

GAG, eDNA GAG [7,27,32,37]

Candida albicans Glycoproteins and neutral polysaccharides (25%); 458 distinct
proteins (55%); lipids, including neutral and polar glycerolipids and
sphingolipids (15%); nucleic acids (5%); phosphorus, uronic acid,

hexosamine

MGCx (α-mannan, β-1,6
glucan, and β-1,3 glucan),

eDNA

β-1,3 glucan [11,21,38]

Cryptococcus
neoformans

Carbohydrates: glucurunoxylomannan, xylose, mannose, glucose,
galactoxylomannan

— — [6]

Saccharomyces
cerevisiae

Carbohydrates including glucose, mannose, and galactose; proteins
in lower abundance including Tdh3, Hsp26, and Sod2

— — [8,39]

*Percent values in parentheses indicate relative abundance for certain components within the extracellular matrix.GAG: galactosaminogalactan; MCCx:
mannan-glucan complex; eDNA: extracellular DNA.

doi:10.1371/journal.ppat.1005828.t001
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contributes to eDNA entering the matrix, as chitinase activity increases DNA release by Asper-
gillus in biofilms [16,27]. The exact mechanism of how eDNA might contribute to drug resis-
tance remains unclear but may also be due to reduced drug penetration.

The role of matrix in multispecies interactions has not been intensively studied. However, it
does appear that bacterial biofilm growth with Candida is linked to protection of the prokary-
otes from antibacterial agents. For example, S. aureus grown in a mixed biofilm with C. albi-
cans had heightened resistance to vancomycin [28]. Furthermore, recent work with an S.
aureus and Candida mixed model identified a role for the C. albicans matrix mannan-glucan
complex in antibacterial shielding [29]. C. albicans matrix carbohydrate was also found to pro-
vide protection to Escherichia coli against the antibiotic ofloxacin in a mixed biofilm scenario
[30]. These findings further demonstrate the nonspecific nature of protection by the matrix
from numerous drugs with widely divergent physiochemical properties. Interestingly, the
galactosaminogalactan (GAG) matrix polysaccharide of Aspergillus has been similarly linked to
antifungal protection [31]. Additionally, GAG affects virulence through the masking of cell
wall β-1,3 glucan and modulating host immune responses, including neutrophil apoptosis [31–
33].

Unraveling theMatrix: Exploitationof BiofilmDrug Targets
During biofilm growth, production of extracellular matrix proceeds rapidly during the first 24
hours of maturation. Attempts to target this biofilm component suggest therapeutic promise
for either the prevention or treatment of biofilm infections. It is intriguing that the most effec-
tive of the currently available antifungal drug classes for treatment of Candida biofilms are the
echinocandin antifungals, which inhibit cell wall β-1,3 glucan synthesis [34]. It has been postu-
lated this inhibition of glucan synthesis in the cell wall results in less β-1,3 glucan in the matrix
[35]. We posit that either the production or assembly enzymes of importance for the mature
MGCx may be promising therapeutic targets. Attempts to hydrolyze these polysaccharide and
nucleic acid matrix components have been successful in sensitizing both Candida and Aspergil-
lus biofilms to available antifungals [26,27]. The combination of existing antifungals with a
hydrolyzing enzyme may be useful for mucosal or topical applications. However, disruption of
systemic biofilms, such as those on vascular catheters, would be anticipated to enhance cell dis-
persion and production of disseminated infection, which would consequently require addi-
tional pharmacological interventions both locally for biofilm and systematically to eradicate
microorganisms migrating to tissues and organs.

Peptides targeting the host and microbe matrix interactions have also demonstrated efficacy
in treatment and prevention studies both in vitro and in vivo [36]. Specifically, targeting of
host protein binding to the fibronectin binding site in C. albicans was modestly effective in
inhibiting biofilm formation. The identification and targeting of these additional matrix tar-
gets, particularly those that are conserved among pathogens, holds promise for effective pre-
vention and treatment strategies.

The biofilm matrix represents a complex interaction of multiple macromolecular compo-
nents. A role in cell protection has been identified for several of these constituents. However,
the function for the majority of matrix elements remains unexplored. Deciphering the exact
composition and roles for these materials should lead to advances in biofilm prevention, ther-
apy, and diagnosis.
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